Tropical Clouds and TOA Cloud Radiative Effects in the CMIP5 Models

Hailan Wang^{1 2} and Wenying Su¹
¹NASA Langley Research Center;
²SSAI

The 2014 CERES Science Team Meeting 22 - 24 April, 2014, Hampton, VA

Data

- Observations
 - TOA radiative fluxes
 - CERES EBAF 2.7: 2001-2008
 - Cloudiness: Satellite simulator output
 - GOCCP:
 - 2-D low, mid and high cloud fraction: 2007-2008
 - ISCCP:
 - 3-D joint histogram of cloud fraction (CTP, τ): 1984-2007
- AMIP5 simulations
 - 1979-2008
- Focus on periods common to Obs and AMIP5

CMIP5 Models

Model	Country	Nx*ny	Lon*lat
CanAM4	Canada	128×64	2.8x2.8
CNRM-CM5	France	256×128	1.4×1.4
GFDL-CM3	US-GFDL	144×90	2.5x2.0
HadGEM2-A	UK	192×145	1.875×1.25
IPSL-CM5A-LR	France	96×96	3.75×1.9
MIROC5	Japan	256×128	1.4×1.4
MPI-ESM-LR	Germany	192×96	1.875×1.865
MRI-CGCM3	Japan	320×160	1.125×1.121

Method

- · Clim: Annual mean
- Variability: ENSO
 - Linear regression against ENSO MEI, use 12mon data
- Cloud Radiative Kernel (CRK)
 - Fu-Liou radiative transfer model (Rose and Charlock 2002)
 - Derived for each tropical lon-lat grid and each calendar month, for both obs and AMIP5 multi-model mean, using their respective monthly climatologies
- TOA_CRE(CTP, т)
 - Anomalies due to ENSO:
 CRK(CTP, τ, mon)*deseasonalized CF(CTP, τ, mon, yr)
 linearly regressed against ENSO MEI

Annual Clim: TOA CRE **SWCRE LWCRE** CERES 20N 20N -EQ-EQ 20S -20S 40S - 0 40S 6ÔE 120E 180 120W 6ÓW 60E 120E 180 120W 60W 8ModelMean-CERES -40 40 50 60 20N-20N EQ-EQ 🗜 20S · 20S -40S P 40S -60E 180 120W 6ÓW 60E 120E 180 120W 120E 60W

-4

12

16

20

24

-24 -20

-16 -12

Annual Clim: ISCCP Cloud Fraction(CTP, T)

TOA CRE Anomalies associated with ENSO

ISCCP Cloud Fraction (245mb, T): 55-5N

ISCCP Cloud Fraction (245mb, T)

Considerable model diversity

90. 245 375 500 620 740 900 0.15 0.8 2.45 6.5 16.2 41.5 10

-2.42.2-2-1.8-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20.2-0.4-0.6-0.8

Cloud Radiative Kernel (CTP, T) Annual Tropical Mean

* SW: largely zonally symmetric over

tropical oceans

* LW: notable zonal dependence

* Annual tropical mean distribution consistent with annual global mean in Zelinka et al (2012) using climatology of a different set of models

Reconstructed ΔTOA_CRE(245mb,τ): 5S-5N

Conclusions

- CMIP5 models are problematic in simulating tropical clouds
 - Climatologically:
 - less total cloud amount; lack mid and low clouds
 - less high clouds over Maritime continent; more high clouds over western tropical Indian Ocean and Pacific trade cumulus regions
 - model clouds optically thicker than observed
 - considerable model diversity
 - Model bias in climatology strongly impacts that in variability
- AMIP5 simulations of TOA CRE anomalies due to ENSO
 - Western tropical Pacific:
 - consistently underestimate obs; due to less mean high clouds there
 - Central tropical Pacific:
 - multi-model mean resembles obs well, which is however a result of compensating errors between weaker anomaly from thin high clouds and stronger anomaly from medium and thick high clouds
 - Considerable model diversity